Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators.

نویسندگان

  • Jingyue Ju
  • Dae Hyun Kim
  • Lanrong Bi
  • Qinglin Meng
  • Xiaopeng Bai
  • Zengmin Li
  • Xiaoxu Li
  • Mong Sano Marma
  • Shundi Shi
  • Jian Wu
  • John R Edwards
  • Aireen Romu
  • Nicholas J Turro
چکیده

DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction offers a paradigm to decipher DNA sequences. We report here the construction of such a DNA sequencing system using molecular engineering approaches. In this approach, four nucleotides (A, C, G, T) are modified as reversible terminators by attaching a cleavable fluorophore to the base and capping the 3'-OH group with a small chemically reversible moiety so that they are still recognized by DNA polymerase as substrates. We found that an allyl moiety can be used successfully as a linker to tether a fluorophore to 3'-O-allyl-modified nucleotides, forming chemically cleavable fluorescent nucleotide reversible terminators, 3'-O-allyl-dNTPs-allyl-fluorophore, for application in SBS. The fluorophore and the 3'-O-allyl group on a DNA extension product, which is generated by incorporating 3'-O-allyl-dNTPs-allyl-fluorophore in a polymerase reaction, are removed simultaneously in 30 s by Pd-catalyzed deallylation in aqueous buffer solution. This one-step dual-deallylation reaction thus allows the reinitiation of the polymerase reaction and increases the SBS efficiency. DNA templates consisting of homopolymer regions were accurately sequenced by using this class of fluorescent nucleotide analogues on a DNA chip and a four-color fluorescent scanner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis†

Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first versio...

متن کامل

A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesisy

Fluorescent 2’-deoxynucleotides containing a protecting group at the 3’-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3’-OH unprotected cleavable fluorescent 2’-deoxynucleotides and their evaluation as reversible terminators for highthroughput DNA SBS strategies. In this first version...

متن کامل

Fluoride-Cleavable, Fluorescently Labelled Reversible Terminators: Synthesis and Use in Primer Extension

Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators that enable array-based DNA sequencing-by-synthesis (SBS) approaches. Herein, we describe the synthesis and full characterisation of four reversible terminators bearing a 3'-blocking moiety and a linker-dye system that is removable under the same fluoride-based treatment. Each nucleotid...

متن کامل

Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides.

DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction can decipher many sequences in parallel. We report here a DNA sequencing method that is a hybrid between the Sanger dideoxynucleotide terminating reaction and SBS. In this approach, four nucleotides, modified as reversible terminators by capping the 3'-OH with a small reversible moiety so that they are still recogni...

متن کامل

Hybrid approach to DNA sequencing

The traditional Sanger method of DNA sequencing, which uses dideoxynucleotides (ddNTPs) to terminate DNA synthesis at each of the four bases, has remained the gold standard in DNA sequencing for years. The recent development of ‘‘sequencing by synthesis’’ (SBS) techniques, which identify each base as the DNA strand is extended, has offered faster and cheaper sequencing in a massively parallel s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 52  شماره 

صفحات  -

تاریخ انتشار 2006